Cation Control of Diastereoselectivity in Iridium-Catalyzed Allylic Substitutions. Formation of Enantioenriched Tertiary Alcohols and Thioethers by Allylation of 5H-Oxazol-4-ones and 5H-Thiazol-4-ones
We report highly diastereo- and enantioselective allylations of substituted 5H-oxazol-4-ones and 5H-thiazol-4-ones catalyzed by a metallacyclic iridium complex. Enantioselective Ir-catalyzed allylation of substituted 5H-oxazol-4-ones occurs with high diastereoselectivity by employing the corresponding zinc enolates; enantioselective Ir-catalyzed allylation of substituted 5H-thiazol-4-ones occurs with the corresponding magnesium enolates with high diastereoselectivity. The allylation of substituted 5H-oxazol-4-ones provides rapid access to enantioenriched tertiary α-hydroxy acid derivatives unavailable through Mo-catalyzed allylic substitution. The allylation of substituted 5H-thiazol-4-ones provides a novel method to synthesize enantioenriched tertiary thiols and thioethers. The observed cation effect implies a novel method to control the diastereoselectivity in Ir-catalyzed allylic substitution.
Read more on publisher's site.