Reductive Elimination from Arylpalladium Cyanide Complexes

Reductive Elimination from Arylpalladium Cyanide Complexes

J. Am. Chem. Soc.   2012134,  5758–5761.

We report the isolation and characterization of arylpalladium cyanide complexes that undergo reductive elimination to form arylnitriles. The rates of reductive elimination from a series of arylpalladium cyanide complexes reveal that the electronic effects on the reductive elimination from arylpalladium cyanide complexes are distinct from those on reductive reductive eliminations from arylpalladium alkoxo, amido, thiolate, and enolate complexes. Arylpalladium cyanide complexes containing aryl ligands with electron-donating substituents undergo reductive elimination of aromatic nitriles faster than complexes containing aryl ligands with electron-withdrawing substituents. In addition, the transition state for the reductive elimination of the aromatic nitrile is much different from that for reductive eliminations that occur from most other arylpalladium complexes. Computational studies indicate that the reductive elimination of an arylnitrile from Pd(II) occurs through a transition state more closely related in structure and electronic distribution to that for the insertion of CO into a palladium–aryl bond. Read more on publisher's site.