Ruthenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes

Ruthenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes

J. Am. Chem. Soc.  2005126,  2702-2703.

A ruthenium-catalyzed intermolecular, anti-Markovnikov hydroamination of vinylarenes with secondary aliphatic and benzylic amines is reported. The combination of Ru(cod)(2-methylallyl)2, 1,5-bis(diphenylphosphino)pentane, and triflic acid was the most effective catalyst of those tested. Control reactions conducted without ligand or acid did not form the amine. The reaction of morpholine, piperidine, 4-phenylpiperazine, 4-BOC-piperazine, 4-piperidone ethylene ketal, and tetrahydroisoquinoline with styrene in the presence of 5 mol % of this catalyst formed the corresponding β-phenethylamine products in 64−96% yield, with 99% regioselectivity, and without enamine side products. Acyclic amines such as n-hexylmethylamine and N-benzylmethylamine reacted with styrene in 63 and 50% yields, respectively. Alkyl-, methoxy-, and trifluoromethyl-substituted styrenes reacted with morpholine in the presence of this catalyst or a related one containing 1,1‘-bis(diisopropylphosphino)ferrocene as ligand to give the products in 51−91%. Further, the hydroamination of α-methyl styrene was observed for the first time with a homogeneous transition metal catalyst. Preliminary mechanistic studies showed that the reaction occurred by direct, irreversible, anti-Markovnikov hydroamination and that the mechanism of the ruthenium-catalyzed hydroamination is likely to be distinct from that of the recently reported rhodium-catalyzed reaction. Read more on publisher's site.